2017年八年级数学上第2课时直角三角形的两个锐角互余学案新版新人教版

作者:佚名 教案来源:网络 点击数:    有奖投稿

2017年八年级数学上第2课时直角三角形的两个锐角互余学案新版新人教版

本资料为WORD文档,请点击下载地址下载
文 章
来源 莲山 课件 w w
w.5 Y k J.cOM

第2课时 直角三角形的两个锐角互余
 
1.通过三角形的内角和定理推导出直角三角形的两锐角互余.
 
2.理解并会运用直角三角形的两锐角互余及其逆定理.
 
阅读教材P13~14,完成预习内容.
如图,在直角三角形ABC中,∠C=90°,由三角形内角和定理,得∠A+∠B+∠C=________,
即∠A+∠B+________=________.
所以∠A+∠B=________.
知识探究
1.直角三角形的两个锐角________.
2.直角三角形可以用符号“________”表示,直角三角形ABC可以写成________.
3.由三角形内角和定理可得:有两个角互余的三角形是________三角形.
自学反馈
1.若直角三角形的一个锐角为20°,则另一个锐角等于________.
2.在△ABC中,∠A=60°,∠B=12∠A,则△ABC是________三角形.
  判断三角形的类型,可根据已知条件推算出三个内角的度数,再进行判断,当已知两角互余时,则是直角三角形.
 
活动1 小组讨论
 
例1 如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是87°.
  “直角三角形的两锐角互余”常常和三角形内角和定理综合起来求角的度数.
例2 在△ABC中,如果∠A=12∠B=13∠C,那么△ABC是什么三角形?
解:设∠A=x,那么∠B=2x,∠C=3x.
根据题意,得x+2x+3x=180°.
解得x=30°.
∴∠A=30°,∠B=60°.
∴△ABC是直角三角形.

活动2 跟踪训练
1.如图,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A=________.
 
2.如图,Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有________个直角三角形.
  
活动3 课堂小结
运用直角三角形的两锐角互余及三角形内角和定理求三角形中角度.
 
【预习导学】
180° 90° 180° 90°
知识探究
1.互余 2.Rt△ Rt△ABC 3.直角 
自学反馈
1.70° 2.直角 
【合作探究】
活动2 跟踪训练
1.52° 2.5

文 章
来源 莲山 课件 w w
w.5 Y k J.cOM
最新教案

点击排行

推荐教案