2017六年级数学上册期中知识点归纳(第三单元人教版)

作者:佚名 教案来源:网络 点击数:    有奖投稿

2017六年级数学上册期中知识点归纳(第三单元人教版)

文 章来
源莲山 课
件 w w w.5Y
k J.Com 2017六年级数学上册期中知识点归纳(第三单元人教版)                            
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × =    3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c  当b>1时,c
②除以小于1的数,商大于被除数:a÷b=c  当b<1时,c>a  (a≠0  b≠0)
③除以等于1的数,商等于被除数:a÷b=c  当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6     12∶20读作:12比20
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
                  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?
即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?
即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几  (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几  (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙   (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)
(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1
 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– 
 (例:9比15少几分之几?1-9÷15=1– =1– = )
 D 甲=乙±差=乙±乙× =乙±乙× =乙(1± )
(例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1±  )
(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
   例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
        方法一:56÷(3+5)=7 甲:3×7=21  乙:5×7=35
        方法二:甲:56× =21   乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
        方法二:甲乙的和:21÷ =56   乙:56× =35
        方法三:甲÷乙=   乙=甲÷ =21÷ =35
  5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。文 章来
源莲山 课
件 w w w.5Y
k J.Com
最新教案

点击排行

推荐教案