八年级数学上1.3证明(2)同步练习(浙教版有答案)

作者:佚名 资料来源:网络 点击数:    有奖投稿

八年级数学上1.3证明(2)同步练习(浙教版有答案)

本资料为WORD文档,请点击下载地址下载
文章
来源 莲山课
件 w w w.5 Y K
j.Co M

1.3 证明 (2)
一.选择题
1.如图,AB∥CD,AD和BC相交于点O,∠A= 20°,∠COD=100°,则∠C的度数是(  )
 A.80°      B.70°     C.60°         D.50°
                                                       
2.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(  )
A.40°       B.60°     C.80°          D.90°

3.一个三角形的三个内角的度数之比为2∶3∶7,则这个三角形一定是(  )
A.等腰三角形           B.直角三角形
C.锐角三角形           D.钝角三角形
4.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE等于(       ).
A.20°       B.60°     C.80°          D.90°

 

5、如图所示,∠BDC=148°,∠B=34°,∠C=38°,那么∠A等于(       ).
A.70°       B.76°     C.80°          D.90°

 

二.填空
6、命题“同旁内角互补”中,题设是___ _____,   结论是_________.
7、如图,与∠1构成同位角的是______,与∠2构成内错角的是______.
 

 8.已知:如图,在 △ ABC中,BD是∠ABC 的角平分线,∠BDC=
75°,∠A=40°,求∠ABC =       度

9、在△ABC中,如果∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于_________度.
10、直角三角形中两 个锐角 的差为20°,则两个锐角的度数分别为________度,_______度.
三.解答题
11、用反 证法证明:两条直线被第三条直线所截.如果同旁内角不互补,那么这两条直线不平行.
已知:如图,直线l1,l2被l3所截,∠1+∠2≠180°.
求证:l1与l2不平行.
证明:假设l1 _________ l2,
则∠1+∠2 _________ 180°(两直线平行,同旁内角互补).
这与 _________ 矛盾,故 _________ 不成立.
所以 _________ .

12、(本小题满分12分)已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
分析:要证明AD平分∠BAC,
只要证明       = _________ ,
而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出 _________ ∥ _________ ,这时再观察这两对角的关系已不难得到结论.
证明:∵  AD⊥BC,EF⊥BC(已知)
∴ _________ ∥ _________ ( _________ ).
∴ _________ = _________ (两直线平行,内错角相等),
 _________ = _________ (两直 线平行,同位角相等),
∵ _________ (已知),
∴ _________ ,即AD平分∠BAC( _________ ).

13、如图,在△ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线,∠A=58°,求∠H的度数.
 


14.图一个零件的形状如图所示,规定∠CAB=90°,∠B,∠C应分别等于32°和
21°,检验工人量得∠BDC=148°,就说这个零件不合格,请你运用三角形的有关知识说明此零件不合格的理由.
                                         

15.如图所示,已知AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得到的关系中任选一个加以说明.
 
1.3(2)
1、C        2、A       3.D     4.A   5.B
6、题设是两个角是同旁内角,结 论是这两个角互补.7、∠    ∠   
8、70度  9、117  10、35  55 
11、解:已知:如图,直线l1,l2被l3所截,∠1+∠2≠180°.
求 证:l1与l2不平行.
证明:假设l1∥l2,
则∠1+∠2=180°(两直线平行,同旁内角互补).
这与∠1+∠2≠180°矛盾,故假设不成立.
所以l1与l2 不平行.
用反证法证明问题,先假设结论不成立,即l1∥l2,根据平行线的性质,可得∠1+∠2=180°,与已知相矛盾,从而证得l1与l2不平行.
证明:假设l1∥l2,则∠1+∠2=180°(两直线平行,同旁内角互补),
这与∠1+∠2≠180°矛盾,故假设不成立.所以结论成立,l1与l2不平行.9、解:要证明AD平分∠BAC,只要证明∠BAD=∠CAD,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出EF∥AD,这时再观察这两对角的关系已不难得到结论.
证明:∵ AD⊥BC,EF⊥BC(已知),
∴ EF∥AD(在同一平面内,垂直于同一直线的两直线平行).
∴ ∠1=∠BAD(两直线平行,内错角相等),
∠2=∠CAD(两直线平行,同位角相等).
∵ ∠1=∠2(已知),∴ ∠BAD=∠CAD,即AD平分∠BAC(角平分线的定义).
12、解:∵ ∠A=58°,∴ ∠ABC+∠ACB=180°﹣∠A=180°﹣58°=122°①.
∵ BH是∠ABC的平分线,∴ ∠ HBC= ∠ABC.
∵ ∠ACD是△ABC的外角,CH是外角∠ACD的平分线,
∴ ∠ACH= (∠A+∠ABC),
∴ ∠B CH=∠ACB+∠ACH=∠ACB+ (∠A+∠ABC).
∵ ∠H+∠HBC+∠ACB+∠ACH=180°,
∴ ∠H+ ∠ABC+∠ACB+ (∠A+∠ABC)=180°,
即∠H+(∠ABC+∠ACB)+ ∠A=180°②,
把①代入②得,∠H+122°+ 58°=180°,
∴ ∠H=29°.
13、证明:∵ ∠3 =∠4,∴ AC∥BD.∴ ∠6+∠2+∠3 = 180°.
∵ ∠6 =∠5,∠2 =∠1,
∴ ∠5+∠1+∠3 = 180°.∴ ED∥FB.
14.不合格.理由:连结AD并延长至E点,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠BAD,∴∠CDB=∠B+∠C+∠CAB=143°≠148°,∴这个零件不合格:

15.①∠APC=∠PAB+∠PCD;②∠APC=360°-(∠PAB+∠PCD);
③∠APC=∠PAB-∠PCD;④∠APC=∠PCD-∠PAB.证明略

文章
来源 莲山课
件 w w w.5 Y K
j.Co M
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |