2016年娄星区中考数学一模试卷(含答案和解释)

作者:佚名 资料来源:网络 点击数:    有奖投稿

2016年娄星区中考数学一模试卷(含答案和解释)

本资料为WORD文档,请点击下载地址下载
文 章来
源莲山 课
件 w w w.5Y
k J.Com


2016年湖南省娄底市娄星区中考数学一模试卷
 
一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)
1.±2是4的(  )
A.平方根 B.相反数 C.绝对值 D.算术平方根
2.下列运算正确的是(  )
A.x2•x3=x6 B.(x2)3=x6 C.x3+x2=x5 D.x+x2=x3
3.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为(  )
A.0.242×1010美元 B.0.242×1011美元
C.2.42×1010美元 D.2.42×1011美元
4.不等式组 的解集在数轴上表示正确的是(  )
A.  B.  C.  D.
5.下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是(  )
A.2个 B.3个 C.4个 D.5个
6.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是(  )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
7.下列四个立体图形中,左视图为矩形的是(  )
A.①③ B.①④ C.②③ D.③④
8.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y= 的图象经过点B,则k的值是(  )
 
A.1 B.2 C.  D.
9.若 +|2a﹣b+1|=0,则(b﹣a)2015=(  )
A.﹣1 B.1 C.52015 D.﹣52015
10.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为(  )
 
A.21 B.24 C.27 D.30
 
二、细心填一填,一锤定音(本大题共8道小题,每小题3分,满分24分)
11.已知a+b=3,ab=2,则a2+b2的值为      .
12.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为      .
13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE=      .
 
14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4 .以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是      .(结果保留π)
 
15.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省      元.
 
16.已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上中线的比为      .
17.关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是      .
18.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点( ,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是      .(填写正确结论的序号)
 
 
三、用心做一做,慧眼识金(本大题共2道小题,每小题6分,满分12分)
19.计算:  +|2 ﹣3|﹣( )﹣1﹣0.
20.先化简:( ﹣ )÷ ,然后解答下列问题:
(1)当x=3时,求原代数式的值;
(2)原代数式的值能等于﹣1吗?为什么?
 
四、应用与创新,马到成功(本大题共2道小题,每小题8分,满分16分)
21.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.
类别 时间t(小时) 人数
A t≤0.5 5
B 0.5<t≤1 20
C 1<t≤1.5 a
D 1.5<t≤2 30
E t>2 10
请根据图表信息解答下列问题:
(1)a=      ;
(2)补全条形统计图;
(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?
(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.
 
22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).
备用数据: , .
 
 
五、耐心想一想,再接再厉(本大题共2道小题,每小题9,满分18分)
23.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.
(1)购买一支钢笔和一本笔记本各需多少元?
(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?
24.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
 
 
六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)
25.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.
(1)如图1,求证:EA•EC=EB•ED;
(2)如图2,若 = ,AD是⊙O的直径,求证:AD•AC=2BD•BC;
(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.
26.如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.
(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
 
 
 

2016年湖南省娄底市娄星区中考数学一模试卷
参考答案与试题解析
 
一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)
1.±2是4的(  )
A.平方根 B.相反数 C.绝对值 D.算术平方根
【考点】平方根.
【分析】根据平方根的定义解答即可.
【解答】解:±2是4的平方根.
故选:A.
 
2.下列运算正确的是(  )
A.x2•x3=x6 B.(x2)3=x6 C.x3+x2=x5 D.x+x2=x3
【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法
【分析】根据同底数幂的乘法、同类项和幂的乘方判定即可.
【解答】解:A、x2•x3=x5,错误;
B、(x2)3=x6,正确;
C、x3与x2不是同类项,不能合并,错误;
D、x与x2不是同类项,不能合并,错误;
故选B
 
3.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为(  )
A.0.242×1010美元 B.0.242×1011美元
C.2.42×1010美元 D.2.42×1011美元
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将242亿用科学记数法表示为:2.42×1010.
故选:C.
 
4.不等式组 的解集在数轴上表示正确的是(  )
A.  B.  C.  D.
【考点】在数轴上表示不等式的解集;解一元一次不等式组.
【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.
【解答】解: ,
由①得:x≥1,
由②得:x<2,
在数轴上表示不等式的解集是:
 
故选:D.
 
5.下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是(  )
A.2个 B.3个 C.4个 D.5个
【考点】命题与定理.
【分析】根据正方形的判定方法对①进行判断;根据多边形的内角和公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据三角形中位线性质、菱形的性质和矩形的判定方法对④进行判断;根据三角形内心的性质对⑤进行判断.
【解答】解:①对角线互相垂直且相等的平行四边形是正方形,所以①错误;
②六边形的内角和等于720°,所以②正确;
③在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;
④顺次连接菱形各边中点所得的四边形是矩形,所以④正确;
⑤三角形的内心到三角形三边的距离相等,所以⑤错误.
故选A.
 
6.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是(  )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
【考点】方差;加权平均数;中位数;众数.
【分析】根据方差、众数、平均数和中位数的计算公式和定义分别进行解答即可.
【解答】解:平均数是:(10+15+10+17+18+20)÷6=15;
10出现了2次,出现的次数最多,则众数是10;
把这组数据从小到大排列为10,10,15,17,18,20,
最中间的数是(15+17)÷2=16,则中位数是16;
方差是:  [2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=  = .
则下列说法错误的是C.
故选:C.
 
7.下列四个立体图形中,左视图为矩形的是(  )
A.①③ B.①④ C.②③ D.③④
【考点】简单几何体的三视图.
【分析】根据左视图是分别从物体左面看,所得到的图形,即可解答.
【解答】解:长方体左视图为矩形;球左视图为圆;圆锥左视图为三角形;圆柱左视图为矩形;
因此左视图为矩形的有①④.
故选:B.
 
8.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y= 的图象经过点B,则k的值是(  )
 
A.1 B.2 C.  D.
【考点】反比例函数图象上点的坐标特征;等边三角形的性质.
【分析】首先过点B作BC垂直OA于C,根据AO=2,△ABO是等边三角形,得出B点坐标,进而求出反比例函数解析式.
【解答】解:过点B作BC垂直OA于C,
∵点A的坐标是(2,0),
∴AO=2,
∵△ABO是等边三角形,
∴OC=1,BC= ,
∴点B的坐标是(1, ),
把(1, )代入y= ,
得k= .
故选C.
 
9.若 +|2a﹣b+1|=0,则(b﹣a)2015=(  )
A.﹣1 B.1 C.52015 D.﹣52015
【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.
【分析】利用非负数的性质列出方程组,求出方程组的解得到a与b的值,即可确定出原式的值.
【解答】解:∵  +|2a﹣b+1|=0,
∴ ,
解得: ,
则(b﹣a)2015=(﹣3+2)2015=﹣1.
故选:A.
 
10.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为(  )
 
A.21 B.24 C.27 D.30
【考点】规律型:图形的变化类.
【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.
【解答】解:观察图形得:
第1个图形有3+3×1=6个圆圈,
第2个图形有3+3×2=9个圆圈,
第3个图形有3+3×3=12个圆圈,

第n个图形有3+3n=3(n+1)个圆圈,
当n=7时,3×(7+1)=24,
故选B.
 
二、细心填一填,一锤定音(本大题共8道小题,每小题3分,满分24分)
11.已知a+b=3,ab=2,则a2+b2的值为 5 .
【考点】完全平方公式.
【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.
【解答】解:∵a+b=3,ab=2,
∴a2+b2
=(a+b)2﹣2ab
=32﹣2×2
=5,
故答案为:5
 
12.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为   .
【考点】概率公式.
【分析】由一个不透明的盒子中装有3个红球,2个黄球和1个绿球,直接利用概率公式求解即可求得答案.
【解答】解:∵一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,
∴从中随机摸出一个小球,恰好是黄球的概率为:  = .
故答案为: .
 
13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= 71° .
 
【考点】翻折变换(折叠问题).
【分析】根据三角形内角和定理求出∠B,根据折叠求出∠ECD和∠CED,根据三角形内角和定理求出即可.
【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,
∴∠B=64°,
∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,
∴∠BCD=∠ECD=45°,∠CED=∠B=64°,
∴∠CDE=180°﹣∠ECD﹣∠CED=71°,
故答案为:71°.
 
14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4 .以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是 8﹣2π .(结果保留π)
 
【考点】扇形面积的计算;等腰直角三角形.
【分析】根据等腰直角三角形性质求出∠A度数,解直角三角形求出AC和BC,分别求出△ACB的面积和扇形ACD的面积即可.
【解答】解:∵△ACB是等腰直角三角形,∠ACB=90°,
∴∠A=∠B=45°,
∵AB=4 ,
∴AC=BC=AB×sin45°=4,
∴S△ACB= = =8,S扇形ACD= =2π,
∴图中阴影部分的面积是8﹣2π,
故答案为:8﹣2π.
 
15.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 2 元.
 
【考点】一次函数的应用.
【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.
【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,
1千克苹果的价钱为:y=10,
设射线AB的解析式为y=kx+b(x≥2),
把(2,20),(4,36)代入得: ,
解得: ,
∴y=8x+4,
当x=3时,y=8×3+4=28.
当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),
30﹣28=2(元).
则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.
 
16.已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上中线的比为 2:3 .
【考点】相似三角形的性质.
【分析】相似三角形对应边上中线的比等于相似比,根据以上性质得出即可.
【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为2:3,
∴△ABC与△DEF对应边上中线的比是2:3,
故答案为:2:3.
 
17.关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是  <m<2 .
【考点】根的判别式.
【分析】设一元二次方程的两个根分别为x1,x2,根据方程有两个不相等的实数根可得出△>0,x1+x2>0,x1•x2>0,由此可得出m的取值范围.
【解答】解:设一元二次方程的两个根分别为x1,x2,
∵关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,
∴△>0,x1+x2>0,x1•x2>0,
∴ ,
由①得m> ,
由②得﹣ <m<2.
故m的取值范围是: <m<2.
故答案为: <m<2.
 
18.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点( ,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是 ①③⑤ .(填写正确结论的序号)
 
【考点】二次函数图象与系数的关系.
【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.
【解答】解:由抛物线的开口向下可得:a<0,
根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc>0,故①正确;
直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣ =﹣1,可得b=2a,
a﹣2b+4c=a﹣4a+4c=﹣3a+4c,
∵a<0,
∴﹣3a>0,
∴﹣3a+4c>0,
即a﹣2b+4c>0,故②错误;
∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点( ,0),
∴抛物线与x轴的另一个交点坐标为( ,0),
当x=﹣ 时,y=0,即 ,
整理得:25a﹣10b+4c=0,故③正确;
∵b=2a,a+b+c<0,
∴ ,
即3b+2c<0,故④错误;
∵x=﹣1时,函数值最大,
∴a﹣b+c>m2a﹣mb+c(m≠1),
∴a﹣b>m(am﹣b),所以⑤正确;
故答案为:①③⑤.
 
三、用心做一做,慧眼识金(本大题共2道小题,每小题6分,满分12分)
19.计算:  +|2 ﹣3|﹣( )﹣1﹣0.
【考点】实数的运算;零指数幂;负整数指数幂.
【分析】原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.
【解答】解:原式=2 +3﹣2 ﹣3﹣1=﹣1.
 
20.先化简:( ﹣ )÷ ,然后解答下列问题:
(1)当x=3时,求原代数式的值;
(2)原代数式的值能等于﹣1吗?为什么?
【考点】分式的化简求值.
【分析】(1)这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式,再将x=3代入计算即可;
(2)如果 =﹣1,求出x=0,此时除式 =0,原式无意义,从而得出原代数式的值不能等于﹣1.
【解答】解:(1)( ﹣ )÷
=[ ﹣ ]•
=( ﹣ )•
= •
= .
当x=3时,原式= =2;

(2)如果 =﹣1,那么x+1=﹣(x﹣1),
解得:x=0,
当x=0时,除式 =0,原式无意义,
故原代数式的值不能等于﹣1.
 
四、应用与创新,马到成功(本大题共2道小题,每小题8分,满分16分)
21.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.
类别 时间t(小时) 人数
A t≤0.5 5
B 0.5<t≤1 20
C 1<t≤1.5 a
D 1.5<t≤2 30
E t>2 10
请根据图表信息解答下列问题:
(1)a= 35 ;
(2)补全条形统计图;
(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?
(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.
 
【考点】条形统计图;用样本估计总体;频数(率)分布表;中位数.
【分析】(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;
(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;
(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;
(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.
【解答】解:(1)a=100﹣(5+20+30+10)=35.
故答案为35;

(2)补全条形统计图如下所示:
 

(3)根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5;

(4)30× =22.5(万人).
即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.
 
22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).
备用数据: , .
 
【考点】解直角三角形的应用-仰角俯角问题.
【分析】(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;
92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.
【解答】解:延长PQ交直线AB于点E,
(1)∠BPQ=90°﹣60°=30°;
(2)设PE=x米.
在直角△APE中,∠A=45°,
则AE=PE=x米;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,BE= PE= x米,
∵AB=AE﹣BE=6米,
则x﹣ x=6,
解得:x=9+3 .
则BE=(3 +3)米.
在直角△BEQ中,QE= BE= (3 +3)=(3+ )米.
∴PQ=PE﹣QE=9+3 ﹣(3+ )=6+2 ≈9(米).
答:电线杆PQ的高度约9米.
 
 
五、耐心想一想,再接再厉(本大题共2道小题,每小题9,满分18分)
23.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.
(1)购买一支钢笔和一本笔记本各需多少元?
(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?
【考点】一元一次不等式的应用;二元一次方程组的应用.
【分析】(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.
(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.
【解答】解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得
 
解得:
答:一支钢笔需16元,一本笔记本需10元;

(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得
16x+10(80﹣x)≤1100
解得:x≤50
答:工会最多可以购买50支钢笔.
 
24.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
 
【考点】菱形的判定;全等三角形的判定与性质.
【分析】(1)要证明CF=CH,可先证明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;
(2)根据△EDC绕点C旋转到∠BCE=45°,推出四边形ACDM是平行四边形,由AC=CD判断出四边形ACDM是菱形.
【解答】(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,
∴∠A=∠B=∠D=∠E=45°.
在△BCF和△ECH中, ,
∴△BCF≌△ECH(ASA),
∴CF=CH(全等三角形的对应边相等);

(2)解:四边形ACDM是菱形.
证明:∵∠ACB=∠DCE=90°,∠BCE=45°,
∴∠1=∠2=45°.
∵∠E=45°,
∴∠1=∠E,
∴AC∥DE,
∴∠AMH=180°﹣∠A=135°=∠ACD,
又∵∠A=∠D=45°,
∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),
∵AC=CD,
∴四边形ACDM是菱形.
 
六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)
25.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.
(1)如图1,求证:EA•EC=EB•ED;
(2)如图2,若 = ,AD是⊙O的直径,求证:AD•AC=2BD•BC;
(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.
【考点】圆的综合题.
【分析】(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;
(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;
(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.
【解答】(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,
∴△AED∽△BEC,
∴ ,
∴EA•EC=EB•ED;

(2)证明:如图2,连接CD,OB交AC于点F
∵B是弧AC的中点,
∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.
又∵AD为⊙O直径,
∴∠ABD=90°,又∠CFB=90°.
∴△CBF∽△ABD.
∴ ,故CF•AD=BD•BC.
∴AC•AD=2BD•BC;

(3)解:如图3,连接AO并延长交⊙O于F,连接DF,
∴AF为⊙O的直径,
∴∠ADF=90°,
过O作OH⊥AD于H,
∴AH=DH,OH∥DF,
∵AO=OF,
∴DF=2OH=4,
∵AC⊥BD,
∴∠AEB=∠ADF=90°,
∵∠ABD=∠F,
∴△ABE∽△ADF,
∴∠1=∠2,
∴ ,
∴BC=DF=4.
 
 
 
26.如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.
(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
 
【考点】二次函数综合题.
【分析】(1)把A(﹣1,0)、B(3,0)两点代入y=﹣x2+bx+c即可求出抛物线的解析式,
(2)设D(t,﹣t2+2t+3),过点D作DH⊥x轴,根据S△BCD=S梯形OCDH+S△BDH﹣S△BOC=﹣ t2+ t,即可求出D点坐标及△BCD面积的最大值,
(3)设过点P与BC平行的直线与抛物线的交点为Q,根据直线BC的解析式为y=﹣x+3,过点P与BC平行的直线为y=﹣x+5,得Q的坐标为(2,3),根据PM的解析式为:x=1,直线BC的解析式为y=﹣x+3,得M的坐标为(1,2),设PM与x轴交于点E,求出过点E与BC平行的直线为y=﹣x+1,根据 得点Q的坐标为( ,﹣ ),( ,﹣ ).
【解答】解:(1)由 得 ,则抛物线的解析式为y=﹣x2+2x+3,

(2)设D(t,﹣t2+2t+3),过点D作DH⊥x轴,
则S△BCD=S梯形OCDH+S△BDH﹣S△BOC= (﹣t2+2t+3+3)t+ (3﹣t)(﹣t2+2t+3)﹣ ×3×3=﹣ t2+ t,
∵﹣ <0,
∴当t=﹣ = 时,D点坐标是( , ),△BCD面积的最大值是 ;

(3)设过点P与BC平行的直线与抛物线的交点为Q,
∵P点的坐标为(1,4),直线BC的解析式为y=﹣x+3,
∴过点P与BC平行的直线为y=﹣x+5,
由 得Q的坐标为(2,3),
∵PM的解析式为x=1,直线BC的解析式为y=﹣x+3,
∴M的坐标为(1,2),
设PM与x轴交于点E,
∵PM=EM=2,
∴过点E与BC平行的直线为y=﹣x+1,
由 得 或 ,
∴点Q的坐标为( ,﹣ ),( ,﹣ ),
∴使得△QMB与△PMB的面积相等的点Q的坐标为(2,3),( ,﹣ ),( ,﹣ ).

文 章来
源莲山 课
件 w w w.5Y
k J.Com
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |