2017年嘉祥县中考数学二模试卷(带答案)

作者:佚名 资料来源:网络 点击数:    有奖投稿

2017年嘉祥县中考数学二模试卷(带答案)

本资料为WORD文档,请点击下载地址下载
文 章来
源莲山 课
件 w w w.5Y
k J.Com

山东省济宁市嘉祥县2017年中考数学二模试卷(解析版)
 
一、选择题(本大题共10小题,每小题3分,共30分)
1.在下列实数:﹣1.3, ,0,2,﹣1中,绝对值最小的数是(  )
A.﹣1.3 B.0 C.  D.﹣1
【分析】根据题目中的数据可以求出它们的绝对值,从而可以找出绝对值最小的数,本题得以解决.
【解答】解:∵|﹣1.3|=1.3,| |= ,|0|=0,|2|=2,|﹣1|=1,
∴绝对值最小的数是0,
故选B.
【点评】本题考查实数大小比较,解答本题的关键是求出题目中各个数据的绝对值.
 
2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为(  )
A.4.62×104 B.4.62×106 C.4.62×108 D.0.462×108
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将4.62亿用科学记数法表示为:4.62×108.
故选:C.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
 
3.方程2x2=3x的解为(  )
A.0 B.  C.  D.0,
【分析】方程整理后,利用因式分解法求出解即可.
【解答】解:方程整理得:2x2﹣3x=0,
分解因式得:x(2x﹣3)=0,
解得:x=0或x= ,
故选D
【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
 
4.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为(  )
 
A.40° B.50° C.150° D.140°
【分析】作c∥a,由于a∥b,可得c∥b.然后根据平行线的性质解答.
【解答】解:作c∥a,
∵a∥b,
∴c∥b.
∴∠1=∠5=50°,
∴∠4=90°﹣50°=40°,
∴∠6=∠4=40°,
∴∠3=180°﹣40°=140°.
故选D.
 
【点评】本题考查了平行线的性质,作出辅助线是解题的关键.
 
5.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是(  )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小
【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.
【解答】解:A、 = =8,  = =8,故此选项正确;
B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;
C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;
∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;
D、∵ = ×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]= ×2=0.4,
 = ×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]= ×8=1.6,
∴ < ,故D正确;
故选:C.
【点评】本题主要考查平均数、众数、中位数及方差,熟练掌握这些统计量的意义及计算公式是解题的关键.
 
6.如图为某几何体的三视图,则组成该几何体的小正方体的个数是(  )
A.5 B.6 C.7 D.8
【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.
【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,
因此搭成这个几何体的小正方体的个数为4+1=5个;
故选A.
【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
 
7.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是(  )
 
A.  B.  C.  D.
【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
【解答】解:∵四边形ABCD是菱形,
∴CO= AC=3cm,BO= BD=4cm,AO⊥BO,
∴BC= =5cm,
∴S菱形ABCD= = ×6×8=24cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=24,
∴AE= cm,
故选D.
【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
 
8.若函数y=mx2+(m﹣1)x+ (m﹣1)的图象与x轴只有一个交点,那么m的值是(  )
A.0 B.0,﹣1或1 C.1或﹣1 D.0或1
【分析】分类讨论:当m=0时,函数为y=﹣x,根据一次函数的性质易得一次函数与x轴只有一个交点;当m≠0,利用△=b2﹣4ac=0时,抛物线与x轴有1个交点得到△=(m﹣1)2﹣4m× (m﹣1)=0,然后解关于m的一元二次方程.
【解答】解:当m=0时,函数为y=﹣x,此一次函数与x轴只有一个交点;
当m≠0,当△=(m﹣1)2﹣4m× (m﹣1)=0时,二次函数y=mx2+(m﹣1)x+ (m﹣1)的图象与x轴只有一个交点,解得m=±1.
故选B.
【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.解决本题的关键是讨论函数为一次函数或是二次函数.
 
9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为(  )
 
A.  B.  C.  D.
【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.
【解答】解:∵在△ABC中,∠ACB=90°,AC=BC=4,
∴∠A=∠B,
由折叠的性质得到:△AEF≌△DEF,
∴∠EDF=∠A,
∴∠EDF=∠B,
∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,
∴∠CDE=∠BFD.
又∵AE=DE=3,
∴CE=4﹣3=1,
∴在直角△ECD中,sin∠CDE= = ,
∴sin∠BFD= .
故选:A.
【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.
 
10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:
(1)b2﹣4ac>0;
(2)2a=b;
(3)点(﹣ ,y1)、(﹣ ,y2)、( ,y3)是该抛物线上的点,则y1<y2<y3;
(4)3b+2c<0;
(5)t(at+b)≤a﹣b(t为任意实数).
其中正确结论的个数是(  )
 
A.2 B.3 C.4 D.5
【分析】逐一分析5条结论是否正确:(1)由抛物线与x轴有两个不相同的交点结合根的判别式即可得出该结论正确;(2)根据抛物线的对称轴为x=﹣1,即可得出b=2a,即(2)正确;(3)根据抛物线的对称性找出点(﹣ ,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出(3)错误;(4)由x=﹣3时,y<0,即可得出3a+c<0,结合b=2a即可得出(4)正确;(5)由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出(5)正确.综上即可得出结论.
【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,
∴关于x的方程ax2+bx+c=0有两个不相等的实数根,
∴△=b2﹣4ac>0,
∴(1)正确;
(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,
∴﹣ =﹣1,
∴2a=b,
∴(2)正确;
(3)∵抛物线的对称轴为x=﹣1,点( ,y3)在抛物线上,
∴(﹣ ,y3).
∵﹣ <﹣ <﹣ ,且抛物线对称轴左边图象y值随x的增大而增大,
∴y1<y3<y2.
∴(3)错误;
(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,
∴9a﹣3×2a+c=3a+c<0,
∴6a+2c=3b+2c<0,
∴(4)正确;
(5)∵b=2a,
∴方程at2+bt+a=0中△=b2﹣4a•a=0,
∴抛物线y=at2+bt+a与x轴只有一个交点,
∵图中抛物线开口向下,
∴a<0,
∴y=at2+bt+a≤0,
即at2+bt≤﹣a=a﹣b.
∴(5)正确.
故选C.
【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析5条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.
 
二、填空题(本大题共5小题,每小题3分,共15分)
11.在函数y= 中,自变量x的取值范围是 x≥4 .
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
【解答】解:由题意得,x﹣4≥0且x﹣3≠0,
解得x≥4且x≠3,
所以,自变量x的取值范围是x≥4.
故答案为:x≥4.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
 
12.直线y= x+2与双曲线y= 在第一象限的交点为A(2,m),则k= 6 .
【分析】先把A(2,m)代入直线y= x+2得出m的值,故可得出A点坐标,再代入双曲线y= ,求出k的值即可.
【解答】解:∵直线y= x+2与双曲线y= 在第一象限的交点为A(2,m),
∴m= ×2+2=3,
∴A(2,3),
∴k=xy=2×3=6.
故答案为:6.
【点评】本题考查的是反比例函数与一次函数的交点问题,解答此类题目时要先求出已知点的坐标,再代入含有未知数的函数解析式.
 
13.分解因式:ab4﹣4ab3+4ab2= ab2(b﹣2)2 .
【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
【解答】解:ab4﹣4ab3+4ab2
=ab2(b2﹣4b+4)
=ab2(b﹣2)2.
故答案为:ab2(b﹣2)2.
【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
 
14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是 (﹣10,3) .
 
【分析】根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.
【解答】解:设CE=a,则BE=8﹣a,
由题意可得,EF=BE=8﹣a,
∵∠ECF=90°,CF=4,
∴a2+42=(8﹣a)2,
解得,a=3,
设OF=b,
∵△ECF∽△FOA,
∴ ,
即 ,得b=6,
即CO=CF+OF=10,
∴点E的坐标为(﹣10,3),
故答案为(﹣10,3).
【点评】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化﹣对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
 
15.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是   .
 
【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
【解答】解:∵∠B1C1O=60°,B1C1∥B2C2∥B3C3,
∴∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°= ,
则B2C2= = =( )1,
同理可得:B3C3= =( )2,
故正方形AnBnCnDn的边长是:( )n﹣1.
则正方形A2017B2017C2017D2017的边长是:( )2016.
故答案为: .
【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
 
三、解答题(本大题共7小题,共55分)
16.(5分)计算:(﹣1)2017+2•cos60°﹣ + .
【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.
【解答】解:(﹣1)2017+2•cos60°﹣ +
=﹣1+2× ﹣4+1
=﹣1+1﹣3
=﹣3
【点评】此题主要考查了实数的运算,零指数幂、负整数指数幂的运算方法以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
 
17.(7分)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)
 
请根据统计图完成下列问题:
(1)扇形统计图中,“很喜欢”所对应的圆心角为 144 度;条形统计图中,喜欢“糖馅”粽子的人数为 3 人;
(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;
(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.
【分析】(1)用周角乘以很喜欢所占的百分比即可求得其圆心角,直接从条形统计图中得到喜欢糖馅的人数即可;
(2)利用总人数800乘以所对应的百分比即可;
(3)利用列举法表示,然后利用概率公式即可求解
【解答】解:(1)扇形统计图中,“很喜欢”所对应的圆心角为360°×40%=144度;条形统计图中,喜欢“糖馅”粽子的人数为 3人;

(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);

(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:
 
∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,
∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)= = .
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
 
18.(7分)阅读材料:求1+2+22+23+24+…+22017的值.
解:设S=1+2+22+23+24+…+22016+22017,等式两边同时乘2得:
      2S=2++22+23+24+25…+22017+22018
     将下式减去上式得:2S﹣S=22018﹣1
                                         S=22018﹣1
    即1+2+22+23+24+…+22017=22018﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
【分析】(1)设原式=S,两边乘2变形后,相减求出S即可;
(2)设原式=S,两边乘3变形后,相减求出S即可.
【解答】解:(1)设S=1+2+22+…+210,
两边乘2得:2S=2+22+…+211,
两式相减得:2S﹣S=S=211﹣1,
则原式=211﹣1;

(2)设S=1+3+32+33+…+3n,
两边乘3得:3S=3+32+33+…+3n+1,
两式相减得:3S﹣S=3n+1﹣1,
即S= (3n+1﹣1),
则原式= (3n+1﹣1).
【点评】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解运算方法是解题的关键.
 
19.(7分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)
 
【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.
【解答】解:由题意可知∠BAD=∠ADB=45°,
∴FD=EF=6米,
在Rt△PEH中,∵tanβ= = ,
∴BF= =5 ,
∴PG=BD=BF+FD=5 +6,
在RT△PCG中,∵tanβ= ,
∴CG=(5 +6)• =5+2 ,
∴CD=(6+2 )米.
 
【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
 
20.(9分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;
(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;
(2)根据题意可以写出W与x的函数关系式;
(3)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少.
【解答】解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,
 ,
解得, ,
即购进甲种花卉每盆16元,乙种花卉每盆8元;
(2)由题意可得,
W=6x+ ,
化简,得
W=4x+100,
即W与x之间的函数关系式是:W=4x+100;
(3) ,
解得,10≤x≤12.5,
故有三种购买方案,
由W=4x+100可知,W随x的增大而增大,
故当x=12时, ,即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,
即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.
【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.
 
21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.
(1)求证:AD平分∠CAB;
(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.
①试判断△DHF的形状,并说明理由;
②求⊙O的半径.
 
【分析】(1)由OD∥AC,推出∠CAD=∠ODA,由OA=OD,推出∠OAD=∠ODA,即可证明;
(2)①结论:△DHF是等腰直角三角形.只要证明∠DHF=∠DFH,即可证明;
②设DF=x,由①可知DH=DF=x,由△DFG∽△DAF,推出 = ,可得 = ,推出x=2,DF=2,AD=4,再根据勾股定理即可解决问题;
【解答】(1)证明:连接OD.
∵⊙O与BC相切于点D,
∴OD⊥BC,
∵∠C=90°,
∴OD∥AC,
∴∠CAD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠BAD,
∴AD平分∠CAB.


(2)解:①△DHF是等腰直角三角形.
理由:∵FH平分∠AFE,
∴∠AFH=∠EFH,
∵∠DFG=∠EAD=∠HAF,
∴∠DFG=∠EAD=∠HAF,
∴∠DFG+∠GFH=∠HAF+∠HFA,
即∠DFH=∠DHF,
∴DF=DH,
∵AF是直径,
∴∠ADF=90°,
∴△DHF是等腰直角三角形.

②设DF=x,由①可知DH=DF=x,
∵OH⊥AD,
∴AD=2DH=2x,
∵∠DFG=∠DAF,∠FDG=∠FDG,
∴△DFG∽△DAF,
∴ = ,
∴ = ,
∴x=2,
∵DF=2,AD=4,
∵AF为直径,
∴∠ADF=90°,
∴AF= = =2 ,
∴⊙O的半径为 .
 
【点评】本题考查圆综合题、勾股定理、相似三角形的判定和性质、等腰直角三角形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考压轴题.
 
22.(11分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.
(1)若抛物线经过点C、A、A′,求此抛物线的解析式;
(2)点M是第一象限内抛物线上的一动点,问:当点M在何处是,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;
(3)若P为x轴上方抛物线上的一动点,N为x轴上的一动点,点Q的坐标为(1,0),当点P、N、B、Q构成以BQ为一边的平行四边形时,请直接写出点P的坐标.
 
【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;
(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;
(3)根据平行四边形的性质列方程即可得到结论.
【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),
∴点A′的坐标为:(4,0),
∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,
设抛物线的解析式为:y=ax2+bx+c,
∴ ,
解得: ,
∴此抛物线的解析式为:y=﹣x2+3x+4;

(2)如图1,连接AA′,设直线AA′的解析式为:y=kx+b,
∴ ,
解得: ,
∴直线AA′的解析式为:y=﹣x+4,
设点M的坐标为:(x,﹣x2+3x+4),
则S△AMA′= ×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,
∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,
∴M的坐标为:(2,6);

(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,
∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),
∴点B的坐标为(1,4),
∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,
当BQ为边时,PN∥BQ,PN=BQ,
∵BQ=4,
∴﹣x2+3x+4=±4,
当﹣x2+3x+4=4时,解得:x1=0,x2=3,
∴P1(0,4),P2(3,4);
当﹣x2+3x+4=﹣4时,解得:x3= ,x4= ,
∴P3( ,﹣4),P4( ,﹣4).
 
 
【点评】此题属于二次函数的综合题,考查了待定系数法求函数解析式的知识、平行四边形的性质以及三角形面积问题.掌握分类讨论思想的应用是解此题的关键.

文 章来
源莲山 课
件 w w w.5Y
k J.Com
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |