2018届高考理科数学热点题型:立体几何(含答案和解释)

作者:佚名 资料来源:网络 点击数:    有奖投稿

2018届高考理科数学热点题型:立体几何(含答案和解释)

本资料为WORD文档,请点击下载地址下载
文 章来
源莲山 课
件 w w w.5Y
k J.Com 立体几何
热点一 空间点、线、面的位置关系及空间角的计算
空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.
【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.
(1)求证:平面PBD⊥平面COD;
(2)求直线PD与平面BDC所成角的正弦值.
 
(1)证明 ∵OB=OC,又∵∠ABC=π4,
∴∠OCB=π4,∴∠BOC=π2.
∴CO⊥AB.
又PO⊥平面ABC,
OC⊂平面ABC,∴PO⊥OC.
又∵PO,AB⊂平面PAB,PO∩AB=O,
∴CO⊥平面PAB,即CO⊥平面PDB.
又CO⊂平面COD,
∴平面PDB⊥平面COD.
(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.
 
设OA=1,则PO=OB=OC=2,DA=1.
则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),
∴PD→=(0,-1,-1),BC→=(2,-2,0),BD→=(0,-3,1).
设平面BDC的一个法向量为n=(x,y,z),
∴n•BC→=0,n•BD→=0,∴2x-2y=0,-3y+z=0,
令y=1,则x=1,z=3,∴n=(1,1,3).
设PD与平面BDC所成的角为θ,
则sin θ=PD→•n|PD→||n|
=1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211.
即直线PD与平面BDC所成角的正弦值为22211.
【类题通法】利用向量求空间角的步骤
第一步:建立空间直角坐标系.
第二步:确定点的坐标.
第三步:求向量(直线的方向向量、平面的法向量)坐标.
第四步:计算向量的夹角(或函数值).
第五步:将向量夹角转化为所求的空间角.
第六步:反思回顾.查看关键点、易错点和答题规范.
【对点训练】 如图所示,在多面体A1B1D1­DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.
(1)证明:EF∥B1C.
(2)求二面角E­A1D­B1的余弦值.
 
(1)证明 由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.
 
(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为12,12,1.
设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,
n1⊥A1D→得r1,s1,t1应满足的方程组12r1+12s1=0,s1-t1=0,
(-1,1,1)为其一组解,所以可取n1=(-1,1,1).
设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).
所以结合图形知二面角E­A1D­B1的余弦值为
|n1•n2||n1|•|n2|=23×2=63.
热点二 立体几何中的探索性问题
此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:
(1)根据条件作出判断,再进一步论证;
(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.
【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=5.
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求AMAP的值;若不存在,说明理由.
 
(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,
所以AB⊥平面PAD,所以AB⊥PD.
又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.
(2)解 取AD的中点O,连接PO,CO.
因为PA=PD,所以PO⊥AD.
因为PO⊂平面PAD,平面PAD⊥平面ABCD,
所以PO⊥平面ABCD.
因为CO⊂平面ABCD,所以PO⊥CO.
因为AC=CD,所以CO⊥AD.
 
如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).
设平面PCD的一个法向量为n=(x,y,z),则
n•PD→=0,n•PC→=0,即-y-z=0,2x-z=0,
令z=2,则x=1,y=-2.
所以n=(1,-2,2).
又PB→=(1,1,-1),所以cos〈n,PB→〉=n•PB→|n||PB→|=-33.
所以直线PB与平面PCD所成角的正弦值为33.
(3)解 设M是棱PA上一点,则存在λ∈[0,1],使得AM→=λAP→.
因此点M(0,1-λ,λ),BM→=(-1,-λ,λ).
因为BM⊄平面PCD,所以要使BM∥平面PCD,
则BM→•n=0,即(-1,-λ,λ)•(1,-2,2)=0,解得λ=14.
所以在棱PA上存在点M,使得BM∥平面PCD,此时AMAP=14.
【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.
【对点训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.
(1)求证:DE∥平面BPC;
(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.
 
(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.
 
∵CN⊥AB,DA⊥AB,∴CN∥DA,
又AB∥CD,∴四边形CDAN为平行四边形,
∴CN=AD=8,DC=AN=6,
在Rt△BNC中,
BN=BC2-CN2=102-82=6,
∴AB=12,而E,M分别为PA,PB的中点,
∴EM∥AB且EM=6,又DC∥AB,
∴EM∥CD且EM=CD,四边形CDEM为平行四边形,
∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,
∴DE∥平面BPC.
 
(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以
D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,
则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).
假设AB上存在一点F使CF⊥BD,
设点F坐标为(8,t,0),
则CF→=(8,t-6,0),DB→=(8,12,0),
由CF→•DB→=0得t=23.
又平面DPC的一个法向量为m=(1,0,0),
设平面FPC的法向量为n=(x,y,z).
又PC→=(0,6,-8),FC→=-8,163,0.
由n•PC→=0,n•FC→=0,得6y-8z=0,-8x+163y=0,即z=34y,x=23y,
不妨令y=12,有n=(8,12,9).
则cos〈n,m〉=n•m|n||m|=81×82+122+92=817.
又由图可知,该二面角为锐二面角,
故二面角F-PC-D的余弦值为817.
热点三 立体几何中的折叠问题
将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.
【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=10.
(1)证明:D′H⊥平面ABCD;
(2)求二面角B-D′A-C的正弦值.
 
(1)证明 由已知得AC⊥BD,AD=CD.
又由AE=CF得AEAD=CFCD,故AC∥EF.
因此EF⊥HD,从而EF⊥D′H.
由AB=5,AC=6得DO=BO=AB2-AO2=4.
由EF∥AC得OHDO=AEAD=14.所以OH=1,D′H=DH=3.
于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.
又D′H⊥EF,而OH∩EF=H,
所以D′H⊥平面ABCD.
 
(2)解 如图,以H为坐标原点,HF→的方向为x轴正方向,建立空间直角坐标系H-xyz.
则H(0,0,0),A(-3,-1,0),
B(0,-5,0),C(3,-1,0),
D′(0,0,3),AB→=(3,-4,0),AC→=(6,0,0),AD′→=(3,1,3).
设m=(x1,y1,z1)是平面ABD′的一个法向量,
则m•AB→=0,m•AD′→=0,即3x1-4y1=0,3x1+y1+3z1=0,
所以可取m=(4,3,-5).
设n=(x2,y2,z2)是平面ACD′的一个法向量,
则n•AC→=0,n•AD′→=0,即6x2=0,3x2+y2+3z2=0,
所以可取n=(0,-3,1).
于是cos〈m,n〉=m•n|m||n|=-1450×10=-7525.
sin〈m,n〉=29525.
因此二面角B-D′A-C的正弦值是29525.
【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.
【对点训练】如图1,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
 
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=π2,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,
从而BE⊥平面A1OC.
又CD∥BE,所以CD⊥平面A1OC.
(2)解 由已知,平面A1BE⊥平面BCDE,
又由(1)知,BE⊥OA1,BE⊥OC,
所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=π2.
 
如图,以O为原点,OB→,OC→,OA1→分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,
所以B22,0,0,E-22,0,0,A10,0,22,C0,22,0,
得BC→=-22,22,0,A1C→=0,22,-22,CD→=BE→=(-2,0,0).
设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,
则n1•BC→=0,n1•A1C→=0,得-x1+y1=0,y1-z1=0,取n1=(1,1,1);
n2•CD→=0,n2•A1C→=0, 得x2=0,y2-z2=0,取n2=(0,1,1),
从而cos θ=|cos〈n1,n2〉|=23×2=63,
即平面A1BC与平面A1CD夹角的余弦值为63. 文 章来
源莲山 课
件 w w w.5Y
k J.Com
最新试题

点击排行

推荐试题

| 触屏站| 加入收藏 | 版权申明 | 联系我们 |